In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin
نویسندگان
چکیده
BACKGROUND Although it has been widely accepted that the primary somatosensory (SI) cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. RESULTS In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV). Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field) and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22%) and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11%) and nociceptive-specific neurons (18/27, 67%). In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs) reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. CONCLUSIONS The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.
منابع مشابه
Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملاثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملEffects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats
Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex b...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملEffect of Norepinephrine depletion on induction of experience dependent plasticity in male rat barrel cortex
Introduction: Barrel cortex of rats is a part of somatosensory cortex, which receives information from facial whiskers. Vibrisectomy by sensory deprivation leads to some changes in the barrel cortex, which have been known as experience dependent plasticity. On the other hand, Norepinephrine (NE) and locus coeruleus, which is the main source of NE, influenced response properties of cortical bar...
متن کامل